IntroductionMotor Imagery (MI)-based Brain Computer Interfaces (BCI) have raised gained attention for their use in rehabilitation therapies since they allow controlling an external device by using brain activity, in this way promoting brain plasticity mechanisms that could lead to motor recovery. Specifically, rehabilitation robotics can provide precision and consistency for movement exercises, while embodied robotics could provide sensory feedback that can help patients improve their motor skills and coordination. However, it is still not clear whether different types of visual feedback may affect the elicited brain response and hence the effectiveness of MI-BCI for rehabilitation.MethodsIn this paper, we compare two visual feedback strategies based on controlling the movement of robotic arms through a MI-BCI system: 1) first-person perspective, with visual information that the user receives when they view the robot arms from their own perspective; and 2) third-person perspective, whereby the subjects observe the robot from an external perspective. We studied 10 healthy subjects over three consecutive sessions. The electroencephalographic (EEG) signals were recorded and evaluated in terms of the power of the sensorimotor rhythms, as well as their lateralization, and spatial distribution.ResultsOur results show that both feedback perspectives can elicit motor-related brain responses, but without any significant differences between them. Moreover, the evoked responses remained consistent across all sessions, showing no significant differences between the first and the last session.DiscussionOverall, these results suggest that the type of perspective may not influence the brain responses during a MI- BCI task based on a robotic feedback, although, due to the limited sample size, more evidence is required. Finally, this study resulted into the production of 180 labeled MI EEG datasets, publicly available for research purposes.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Investigating the impact of visual perspective in a motor imagery-based brain-robot interaction: A pilot study with healthy participants


    Beteiligte:
    Farabbi, A (Autor:in) / Figueiredo, P (Autor:in) / Ghiringhelli, F (Autor:in) / Mainardi, L (Autor:in) / Sanches, JM (Autor:in) / Moreno, P (Autor:in) / Santos-Victor, J (Autor:in) / Vourvopoulos, A (Autor:in) / Farabbi, A / Figueiredo, P

    Erscheinungsdatum :

    2023-01-01


    Anmerkungen:

    doi:10.3389/fnrgo.2023.1080794



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    A Motor Imagery-based Lower Limb Rehabilitation Robot System

    Wang, Su / Su, Hao / Huang, Mengjie et al. | IEEE | 2023


    Kinesthetic Motor Imagery Based Brain-Computer Interface for Power Wheelchair Manoeuvring

    T., Jackie / M.P., Paulraj / Adom, A.H. et al. | BASE | 2018

    Freier Zugriff

    Brain Computer Interface Based on Motor Imagery for Mechanical Arm Grasp Control

    Shi, Tian-Wei / Chen, Ke-Jin / Ren, Ling et al. | BASE | 2023

    Freier Zugriff

    Imagery in aviation: pilot training

    Bennett, F. S. / European Association for Aviation Psychology | British Library Conference Proceedings | 1995


    Imagery in Aviation: Pilot Training

    Bennett, F. | British Library Conference Proceedings | 1994