This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. ; Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019 ; Cataloged from student-submitted PDF version of thesis. ; Includes bibliographical references (pages 369-378). ; There is an ever-growing demand for humans and robots to work fluidly together in a number of important domains, such as home care, manufacturing, and medical robotics. In order to achieve this fluidity, robots must be able to (1) recognize their human teammate's intentions, and (2) automatically adapt to those intentions in an intelligent manner. This thesis makes progress in these areas by proposing a framework that solves these two problems (task-level intent recognition and robotic adaptation) concurrently and holistically, using a single model and set of algorithms for both. The result is a mixed-initiative human-robot interaction that achieves the team's goals. The robot is able to reason about the action requirements, timing constraints, and unexpected disturbances in order to adapt intelligently to the human. We extend this framework by additionally maintaining a probabilistic belief over the human's intentions. We develop a risk-aware executive that performs concurrent intent recognition and adaptation. Our executive continuously assesses the risk associated with plan execution, selects adaptations that are safe enough, asks uncertainty-reducing questions when appropriate, and provides a proactive early warning of likely failure. Finally, we present an extension to this work which enables the robot to save time by ignoring potentially many, vanishingly-unlikely scenarios. To achieve this behavior, we frame concurrent intent recognition and adaptation as a constraint satisfaction problem, and compactly represent their associated solutions and policies using compiled structures that are updated online as new observations arise. Through the use of these compiled structures, the robot efficiently reasons about which actions to perform, as well as when to perform them - thereby ensuring decision making consistent with the team's goals. ; by Steven James Levine. ; Ph. D. ; Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Risk-bounded coordination of human-robot teams through concurrent intent recognition and adaptation



    Erscheinungsdatum :

    2019-01-01


    Anmerkungen:

    1102048633


    Medientyp :

    Hochschulschrift


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629




    Exploring Coordination in Human-Robot Teams in Space

    Gervits, Felix / Warne, Charlotte / Downs, Harrison et al. | AIAA | 2017


    Exploring Coordination in Human-Robot Teams in Space (AIAA 2017-5309)

    Gervits, Felix / Warne, Charlotte / Downs, Harrison et al. | British Library Conference Proceedings | 2017


    Collaboration in Human-Robot Teams

    Hoffman, Guy / Breazeal, Cynthia | AIAA | 2004



    Recognition of Affective Communicative Intent in Robot-Directed Speech

    Breazeal, C. / Aryananda, L. | British Library Online Contents | 2002