In this thesis, we synthesize the development of a new concept of operation of small robotic telescopes operated over the Internet. Our design includes a set of improvements in control algorithmic and hardware of several critical points of the list of subsystems necessary to obtain suitable data from a telescope. We can synthesize the principal contributions of this thesis into five independent innovations: - An advanced drive closed-loop control: We designed an innovative hardware and software solution for controlling a telescope position at high precision and high robustness. - A complete Telescope Control System (TCS): We implemented a light and portable software using advanced astronomical algorithms libraries for optimally compute in real-time the telescope positioning. This software also provides a new multiple simultaneous pointing models system using state machines which allows reaching higher pointing precision and longer exposure times with external guiding telescopes. - A distributed software architecture (CoolObs): CoolObs is the implementation of a ZeroC-ICE framework allowing the control, interaction, and communication of all the peripherals present in an astronomical observatory. - A patented system for dynamic collimation of optics: SAPACAN is a mechanical parallel arrangement and its associated software used for active compensation of low-frequency aberration variations in small telescopes. - Collimation estimation algorithms: A sensor-less AO algorithm have been applied by the analysis of images obtained with the field camera. This algorithm can detect effects of lousy collimation. The measured misalignments can later feed corrections to a device like SAPACAN. Due to the constant presence of new technologies in the field of astronomy, it had been one of the first fields to introduce material which was not democratized at this time such as Coupled Charged Devices, internet, adaptive optics, remote and robotic control of devices. However, every time one of these new technologies was included in ...


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Design of a portable observatory control system



    Erscheinungsdatum :

    2018-11-22


    Anmerkungen:

    TDX (Tesis Doctorals en Xarxa)


    Medientyp :

    Hochschulschrift


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629




    Design of a portable observatory control system

    Suc, Vincent | BASE | 2018

    Freier Zugriff


    EOS Space Systems Observatory Control System

    Pearson, M. | British Library Conference Proceedings | 2014