In real-time hybrid testing, systems are separated into a numerically simulated substructure and a physically tested substructure, coupled in real time using actuators and force sensors. Actuators tend to introduce spurious dynamics to the system which can result in inaccuracy or even instability. Conventional means of mitigating these dynamics can be ineffective in the presence of nonlinearity in the physical substructure or transfer system. This article presents the first experimental tests of a novel passivity-based controller for hybrid testing. Passivity control was found to stabilize a real-time hybrid test which would otherwise exhibit instability due to the combination of actuator lag and a stiff physical substructure. Limit cycle behaviour caused by nonlinear friction in the actuator was also reduced by 95% with passivity control, compared to only 64% for contemporary methods. The combination of passivity control with conventional methods is shown to reduce actuator lag from 35.3° to 13.7°. A big advantage of passivity control is its simplicity compared with model-based compensators, making it an attractive choice in a wide range of contexts.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Passivity Control for Nonlinear Real-time Hybrid Tests


    Beteiligte:

    Erscheinungsdatum :

    2021-07-01


    Anmerkungen:

    Peiris , L , Plummer , A & Du Bois , J 2021 , ' Passivity Control for Nonlinear Real-time Hybrid Tests ' , Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering , vol. 235 , no. 6 , pp. 914-928 . https://doi.org/10.1177/0959651820959003



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629




    Passivity-Based Control

    Brogliato, Bernard / Lozano, Rogelio / Maschke, Bernhard et al. | Springer Verlag | 2019


    Passivity-based control of nonlinear flexible multibody systems

    Kelkar, A.G. / Joshi, S.M. / Alberts, T.E. | Tema Archiv | 1995


    Time domain passivity control for delayed teleoperation

    Artigas Esclusa, Jordi | BASE | 2014

    Freier Zugriff

    Passivity Based Nonlinear Attitude Control of the Romer Satellite

    Quottrup, M. M. / Wisniewski, R. / Krogh-Sorensen, J. et al. | British Library Conference Proceedings | 2002