The increased penetration of volatile renewable energy into distribution networks necessities more efficient distributed voltage control. In this paper, we design distributed feedback control algorithms where each bus can inject both active and reactive power into the grid to regulate the voltages. The control law on each bus is only based on local voltage measurements and communication to its physical neighbors. Moreover, the buses can perform their updates asynchronously without receiving information from their neighbors for periods of time. The algorithm enforces hard upper and lower limits on the active and reactive powers at every iteration. We prove that the algorithm converges to the optimal feasible voltage profile, assuming linear power flows. This provable convergence is maintained under bounded communication delays and asynchronous communications. We further numerically test the performance of the algorithm using the full nonlinear AC power flow model. Our simulations show the effectiveness of our algorithm on realistic networks with both static and fluctuating loads, even in the presence of communication delays.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Distributed Optimal Voltage Control With Asynchronous and Delayed Communication


    Beteiligte:
    Magnússon, Sindri (Autor:in) / Qu, Guannan (Autor:in) / Li, Na (Autor:in)

    Erscheinungsdatum :

    2020-01-01


    Anmerkungen:

    doi:10.1109/TSG.2020.2970768



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629




    Asynchronous distributed detection

    Wei Chang, / Kam, M. | IEEE | 1994


    Asynchronous Distributed Detection

    Chang, W. | Online Contents | 1994


    Asynchronous Distributed Power Control of Multimicrogrid Systems

    Wang, Zhaojian / Chen, Laijun / Liu, Feng et al. | BASE | 2020

    Freier Zugriff