Abstract The emerging usage of connected vehicles promises new business models and a high level of innovation, but also poses new challenges for the automotive domain and in particular for the connectivity dimension, i. e. the connection between vehicles and cloud environments including the architecture of such systems. Among other challenges, IoT Cloud platforms and their services have to scale with the number of vehicles on the road to provide functionality in a reliable way, especially when dealing with safety-related functions. Testing the scalability, functionality, and availability of IoT Cloud platform architectures for connected vehicles requires data from real world scenarios instead of hypothetical data sets to ensure both the proper functionality of distinct connected vehicle services and that the architecture scales with a varying number of vehicles. However, the closed and proprietary nature of current connected vehicle solutions aggravate the availability of both vehicle data and test environments to evaluate different architectures and cloud solutions. Thus, this paper introduces an approach for connecting the Eclipse SUMO traffic simulation with the open source connected vehicle ecosystem Eclipse Kuksa. More precisely, Eclipse SUMO is used to simulate traffic scenarios including microscopic properties like the position or emission. The generated data of each vehicle is then be sent to the message gateway of the Kuksa IoT Cloud platform and delegated to an according example service that consumes the data. In this way, not only the scalability of connected vehicle IoT architectures can be tested based on real world scenarios, but also the functionality of cloud services can be ensured by providing context-specific automotive data that goes beyond rudimentary or fake data-sets.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Bridging the gap between SUMO and Kuksa:using a traffic simulator for testing cloud-based connected vehicle services



    Erscheinungsdatum :

    2019-01-01


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629





    Microscopic Traffic Simulation using SUMO

    Lopez, Pablo Alvarez / Behrisch, Michael / Bieker-Walz, Laura et al. | IEEE | 2018


    ToST: Tokyo SUMO Traffic Scenario

    Yamazaki, Yuji / Tamura, Yasumasa / Defago, Xavier et al. | IEEE | 2023


    FraST: Frankfurter Kreuz SUMO Traffic Scenario

    Willecke, Alexander / Garlichs, Keno / Schulze, Fynn et al. | IEEE | 2023