We investigate the control challenges in grinding circuits—slow dynamics, long dead times, variable coupling— and the controller tuning challenge, that is, the difficulty in translating operating goals into tuning goals and closed-loop performance. A tuning algorithm for DMC (dynamic matrix control), suitable for the mineral processing industry, is proposed. The tuning problem is posed as a multiobjective optimization problem, in which the tuning goals are directly related to the desired closed-loop performance of process variables. The problem is solved using a compromise optimization, which minimizes the Euclidian distance between a feasible solution and the Utopia solution. Three case studies are presented, which validate the tuning algorithm for DMC in linear and non-linear grinding circuit models. The closed-loop performance obtained with the proposed tuning algorithm is compared to the one obtained through a benchmark tuning technique from the literature. The proposed tuning method has the following features: i) it shapes the closed-loop response according to the goal definitions for linear systems; ii) it requires tailored initial guesses and search spaces to converge to a stabilizing solution in non-linear applications; and iii) it allows the user to specify the desired closed-loop performance behavior in the tuning procedure, allowing the implementation of an adequate controller for each situation. ; Validerad;2023;Nivå 2;2023-12-06 (sofila); License full text: BY-NC-ND 4.0 Funder: Vale S. A. Instituto Tecnológico Vale; Coordenação de Aperfeiçoamento de Pessoal deNível Superior (CAPES) (Finance Code 001); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant nos. 444425/2018-7, 315695/2020-0 and Grant 306394/2021-9)


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Multiobjective tuning technique for MPC in grinding circuits



    Erscheinungsdatum :

    2023-01-01


    Anmerkungen:

    Scopus 2-s2.0-85159708635



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    Software modeling of grinding circuits

    Sastry, K.V.S. / Sudhir, G.S. | Tema Archiv | 1995


    Nonlinear Model-Predictive Integrated Missile Control and Its Multiobjective Tuning

    Bachtiar, Vincent / Manzie, Chris / Kerrigan, Eric C. | AIAA | 2017




    Enhanced Multiobjective Technique for Multidisciplinary Design Optimization

    John N. Rajadas / Ralph A. Jury Aditi Chattopadhyay | AIAA | 1998