Recently, flapping wing micro air vehicles have received great attention with the drive to make smaller and smaller devices. This paper describes a theoretical investigation and subsequent practical implementation of a specific type of flight motor structure for this type of micro air vehicle that uses a “click” mechanism to improve mechanical efficiency. Diptera, which may use the mechanism, are the inspiration for this work. It builds on previous research into the “click” mechanism, which has been studied both from the biological and engineering points of view. It is difficult to capture the important fine details using a simple analytical model; hence, a multi-body dynamic software is used to model the device and to aid the design of a large-scale prototype. Force–deflection curves of the structure and the displacement response are obtained numerically and experimentally. The experimental and numerical results compare reasonably well, enabling the model to be used for further development and potential miniaturization of the flight motor structure. In a practical device, asymmetry occurs in the up- and down-stroke. The effects of this asymmetry are compared with previous results from analytical models. It is found that asymmetry offers a marginal improvement.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Theoretical and practical investigation into the use of a bio-inspired “click” mechanism for the flight motor of a micro air vehicle


    Beteiligte:

    Erscheinungsdatum :

    2017-06-01


    Anmerkungen:

    2-s2.0-85020521592.pdf



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    Biologically Inspired Micro-Flight Research

    Raney, David L. / Waszak, Martin R. | NTRS | 2003


    Biologically Inspired Micro-Flight Research

    D. L. Raney / M. R. Waszak | NTIS | 2003


    Biologically Inspired Micro-Flight Research

    Raney, David L. / Waszak, Martin R. | SAE Technical Papers | 2003


    Biologically Inspired Micro-Flight Research

    Raney, D. L. / Waszak, M. R. / Society of Automotive Engineers | British Library Conference Proceedings | 2003


    Biologically-Inspired Flight for Micro Air Vehicles

    K. Breuer / S. Swartz / J. Peraire et al. | NTIS | 2012