Large scale, on-orbit additive manufacturing (AM) and assembly is being considered as a modular and resource saving approach to facilitate permanent human presence in space. To realise this, a novel AM approach to freeform fabricate large, functional structures in space has been developed. Combining the reach of a free-flying CubeSat with a collaborative robotic arm and a 3D printer, large support-free thermoplastic structures can be manufactured beyond the size of the setup itself. The feasibility of the proposed fabrication approach was established using the Experimental Lab for Proximity Operations and Space Situational Awareness (ELISSA) system, where a modified fused filament fabrication setup was mounted on a free-flyer to 3D print free-standing structures. Using a continuous navigation path incorporating an infinite fabrication loop, over 70 centimetre long, support-free trusses were produced to well demonstrate the potential of the proposed method in boundless direct printing of complex structures, independent of gravity or printing orientation. ; Mechanical Engineering


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Feasibility Study of Large-Format, Freeform 3D Printing for On-Orbit Additive Manufacturing


    Beteiligte:
    Jonckers, D. (Autor:in) / Tauscher, O. (Autor:in) / Stoll, E. (Autor:in) / Thakur, A. (Autor:in)

    Erscheinungsdatum :

    2021-01-01



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629




    Solid freeform manufacturing

    Heller,R. / Daimler-Benz,Stuttgart,DE | Kraftfahrwesen | 1994


    Solid Freeform Manufacturing

    Heller, R. / ENEAS; Agency: Italy | British Library Conference Proceedings | 1994


    Additive manufacturing on-orbit

    HIGHAM JOHN SCOTT / WU GORDON / FLUITT DANIEL ANDREW et al. | Europäisches Patentamt | 2021

    Freier Zugriff