Due to dynamic effects, clearances, manufacturing and assembly errors in form-closed cam mechanisms, the follower jump can also occur. For conjugate cam mechanisms a technique to avoid the follower jump without the use of a spring involves making the conjugate cam profiles bigger than the kinematical ones by adding an external offset. This strategy produces an interference fit between the conjugate cam profiles and the follower train. This paper presents an ordered procedure to study the influence that the planned interference fit has on the evaluation of the contact forces, the expected fatigue life of the rollers, contact pressures and the lubrication conditions. The study is based on a conjugate cam mechanism with translational roller followers used in a real automatic process for manufacturing muselets. A three-degree-of-freedom dynamic model is proposed and the Hertzian theory for general profiles is used to model the nonlinear contact stiffness between the cams and the crowned rollers. The dynamic model predicts that it is difficult to obtain conjugate cam mechanisms with an infinite expected fatigue life of the rollers just by considering typical achievable manufacturing errors or clearances, and as happens in reality, a set-up process is highly recommended. The procedure is also tested with measured manufacturing errors on a coordinate measure machine—CMM—and with measured radial internal clearances for the rollers measured by an experimental apparatus. Also, to evaluate lubrication conditions, surface finishing measurements have been taken of the cams and the rollers with a surface profiler. ; Postprint (published version)


    Zugriff

    Download


    Exportieren, teilen und zitieren