The purpose of this research is an analysis of the static and dynamic stability of the Modular Airplane System (MAS). The MAS is designed to perform suborbital space flights. The concept assumes that two tailless vehicles bonded together form a conventional aircraft where the wing of the second one is used as the horizontal tail of the whole system. The CFD calculations, and the stability and control derivatives were conducted by the PANUKL package, which uses a low order panel method for the aerodynamic analysis. The analysis of the static and dynamic stability was performed by the SDSA package. Only the selected part of the MAS mission was investigated. The results that will be presented have been divided into three parts: static stability, longitudinal dynamic stability and lateral dynamic stability.The MAS has a few possible applications. The first one is a suborbital space tourism flight. Moreover, it can be used as a lunching vehicle for micro satellites or as a testing platform for new space technology to improve their TRL level. Finally, in the far future, it could be used as a fast point-to-point travel system.The paper presents the results of the static and dynamic stability of a unique aircraft configuration which consists of two tailless vehicles. The research focuses on a situation where the vehicles are just before separation and their mass is similar. Moreover, the influence of the second vehicle’s position with respect to the first one is included.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Study on the static and dynamic stability of a Modular Airplane System


    Beteiligte:

    Erscheinungsdatum :

    2016-12-20


    Anmerkungen:

    doi:10.3846/16487788.2016.1235849
    Aviation; Vol 20 No 4 (2016); 160-167 ; 1822-4180 ; 1648-7788



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629





    Static earthing system for airplane

    ZHU WANJUN / ZHOU ZHENGYU / TANG KAI | Europäisches Patentamt | 2015

    Freier Zugriff

    Development of Dynamic Stability Derivatives of an Airplane from Static Wind Tunnel Tests

    Chang, Byeong-Hee / Cho, Sang-Oh / Cho, Tae-Hwan et al. | AIAA | 2004


    DEVELOPMENT OF DYNAMIC STABILITY DERIVATIVES OF AN AIRPLANE FROM STATIC WIND TUNNEL TESTS

    Chang, B.-H. / Cho, S.-O. / Cho, T.-H. et al. | British Library Conference Proceedings | 2004