This paper presents the development of a quasi-three-dimensional aerodynamic solver, which provides accurate results for wing drag comparable to the higher-fidelity aerodynamic solvers at significantly lower computational costs. The proposed solver calculates the viscous wing drag using the combination of a two-dimensional airfoil analysis tool with a vortex lattice code. Validation results show that the results of the quasi-three-dimensional solver are in good agreement with higher-fidelity computational fluid dynamics solvers. The quasi-three-dimensional solver is used for a wing shape multidisciplinary design optimization. A multidisciplinary design optimization problem is formulated to design the wing shape of a typical passenger aircraft. The aircraft maximum takeoff weight is considered as the objective function. Two optimization algorithms, a local and a global optimum finder, are implemented in the multidisciplinary design optimization system. The optimization results indicate that the global optimization algorithm shows a slightly greater reduction in maximum takeoff weight. However, finding the global optimum needs about 20 times the computational time of the local optimization algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Quasi-Three-Dimensional Aerodynamic Solver for Multidisciplinary Design Optimization of Lifting Surfaces


    Beteiligte:
    Mariens, J. (Autor:in) / Elham, A. (Autor:in) / van Tooren, M. J. L. (Autor:in)

    Erschienen in:

    Journal of Aircraft ; 51 , 2 ; 547-558


    Erscheinungsdatum :

    2014-02-20


    Format / Umfang :

    12 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch