This Paper investigates the concept of solar mirrors in an Earth orbit to provide large-scale terrestrial equatorial solar farms with additional solar power during the hours of darkness. A flower constellation of mirrors is considered in highly eccentric orbits (semimajor axis = 20 , 270.4    km ) in order to increase the time of visibility over the solar farms, and through this architecture, only two mirrors are needed to provide complete night coverage over three equatorial locations. Selecting the proper value for the orbit eccentricity, solar radiation pressure and Earth’s oblateness perturbations act on the mirrors so that the apsidal motion of the orbit due to these perturbations is synchronized with the apparent motion of the sun. Therefore, it can be guaranteed that the perigee always points toward the sun and that the mirrors orbit mostly above the night side of the Earth. With respect to geostationary orbit, the family of orbits considered in this Paper allows a passive means to overcome issues related to orbital perturbations. Moreover, because of the large slant range from geostationary orbits, a larger mirror is required to deliver the same energy that could be delivered from a lower orbit with a smaller mirror. As a result, a single antiheliotropic flower constellation composed of two mirrors of 50    km 2 would be able to deliver energy in the range of 4.60–5.20 GW·h per day to 1000    km 3 solar farms on the equator. Finally, it is estimated that, deploying 90 of these constellations, the price of electricity could be reduced from 9.1 cents to 6 cents per kW h .


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Space-Enhanced Terrestrial Solar Power for Equatorial Regions


    Beteiligte:
    Bonetti, F. (Autor:in) / McInnes, C. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2018-09-13


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Space solar power system for terrestrial power utilities

    Kobayashi, Yutaro / Saito, Takashi / Ijichi, Koichi et al. | Tema Archiv | 2004


    Investigation of Equatorial Medium Earth Orbits for Space Solar Power

    Marshall, Michael A. / Madonna, Richard G. / Pellegrino, Sergio | IEEE | 2022


    Ionospheric Prediction Over Equatorial and Non-equatorial Regions Using GNSS Data

    Fidalgo, J. / Cueto, M. / Sardón, E. et al. | British Library Conference Proceedings | 2015


    SBAS Performance Analysis in Equatorial Regions

    Cueto-Felgueroso, G. / Cueto, M. / Cezón, A. et al. | British Library Conference Proceedings | 2015