A mathematical model of the ion–acoustic turbulence that is known to develop in the plume of hollow cathodes is presented. The model takes the form of a partial differential equation for the ion–acoustic wave energy density that can be solved concurrently with a set of the equations of motion that have been augmented with anomalous terms to account for the ion–acoustic turbulence-driven transport of momentum and heat for electrons and ions. Numerical simulations in two-dimensional axisymmetric geometry that solve the complete system of these equations show significantly better agreement with plasma measurements compared to a previous idealized model, which assumed complete saturation of the ion–acoustic turbulence and did not account for the growth stage of the waves. In particular, the model is able to predict accurately the location and magnitude of the maximum resistivity to the electron current along the cathode centerline.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Hollow Cathode Simulations with a First-Principles Model of Ion-Acoustic Anomalous Resistivity


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    2018-02-19


    Format / Umfang :

    13 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    First-principles Modelling of the IAT-driven Anomalous Resistivity in Hollow Cathode Discharges I: Theory

    Jorns, Benjamin / Lopez Ortega, Alejandro / Mikellides, Ioannis G. | AIAA | 2016



    Neutralizer Hollow Cathode Simulations and Validation With Experiments

    Mikellides, Ioannis / Katz, Ira / Goebel, Dan et al. | AIAA | 2009


    One-Dimensional Hollow Cathode Model

    Ira Katz / John R. Anderson / James E. Polk et al. | AIAA | 2003