The steps necessary to achieve the strong coupling between a flowfield solver and a material response solver are presented. This type of coupling is required to accurately capture the complex aerothermodynamic physics occurring during hypersonic atmospheric entries. A blowing boundary condition for the flowfield solver is proposed. This allows the ablating gas calculated by the material response solver to be correctly injected in the boundary layer. A moving mesh algorithm for the flowfield solver that implicitly enforces the geometric conservation law is presented. Using that capability, a mesh movement procedure for surface recession and for accurate shock capturing is proposed. The entire technique is tested using a material response solver with surface ablation and pyrolysis coupled to a hypersonic solver for weakly ionized flows in thermochemical nonequilibrium. Results using the reentry trajectory of the IRV-2 test vehicle are presented, showing that the surface heat fluxes remain accurate as the vehicle geometry and freestream conditions change.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Strongly Coupled Computation of Material Response and Nonequilibrium Flow for Hypersonic Ablation


    Beteiligte:
    Martin, Alexandre (Autor:in) / Boyd, Iain D. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2014-10-29


    Format / Umfang :

    16 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch