This paper presents an efficient aerodynamic method for interacting lifting surfaces in the presence of wake interaction over long distances. The near wake is modeled using the traditional lifting line with a shed vortex to capture the circulatory unsteady aerodynamics. The far-wake model is composed of a wake roll-up and consolidation model and a wake aging model. It is shown that this approach can save up to 97% the number of Biot–Savart function evaluations in a free-vortex wake implementation, while maintaining the error under 0.1%. The induced velocity by the trailing vortices do not show any singularity, and it depends on the spanwise distribution of circulation on the lifting surface. Two notional examples are used to illustrate the capability of this method: a rapid rolling motion of an airplane with prescribed target loads, and two fixed-wing aircraft tethered to the ground to harvest wind energy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Efficient Aerodynamic Method for Interacting Lifting Surfaces over Long Distances


    Beteiligte:

    Erschienen in:

    Journal of Aircraft ; 55 , 6 ; 2466-2475


    Erscheinungsdatum :

    2018-07-16


    Format / Umfang :

    10 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Viscous Optimization of Interacting Lifting Surfaces

    Chapin, V. / Caumel, Y. / Neyhousser, R. et al. | British Library Conference Proceedings | 2008


    Viscous Optimization of Interacting Lifting Surfaces

    Chapin, Vincent / Caumel, Yves / Neyhousser, Romaric | AIAA | 2008


    Aerodynamic Optimisation of Non-planar Lifting Surfaces

    Skinner, Shaun N. / Zare-Behtash, Hossein | AIAA | 2016


    Nonlinear prediction of the aerodynamic loads on lifting surfaces

    KANDIL, O. / MOOK, D. / NAYFEH, A. | AIAA | 1974


    Aerodynamic lifting device

    SCHLUNKE KIM CHRISTOPHER / SEEBER KEN / LAMB RODNEY | Europäisches Patentamt | 2018

    Freier Zugriff