This book provides an introduction to the principles of several of the more widely used methods in medical imaging. Intended for engineering students, it provides a final-year undergraduate- or graduate-level introduction to several imaging modalities, including MRI, ultrasound and X-Ray CT. The emphasis of the text is on mathematical models for imaging and image reconstruction physics. Emphasis is also given to sources of imaging artefacts. Such topics are usually not addressed across the different imaging modalities in one book, and this is a notable strength of the treatment given here

    Introduction -- Diagnostic x-ray imaging -- Basic principles of x-ray imaging -- Ideal description of imaging process -- Relevant physics -- Atomic structure -- Nature of x-rays -- X-ray generation -- X-ray spectra -- X-ray interactions with matter -- Attenuation -- The basics -- Variation of linear attenuation coefficient -- Beam hardening -- Image formation physics -- Film -- Modelling film characteristics -- X-ray image quality -- Broad image quality goals -- The real imaging process -- Geometrical considerations -- Quantum (photon) considerations -- Beam hardening -- Film effects -- Grouping the effects of unsharpness -- Quantitative measures of image quality -- Measures of spatial resolution -- Measures of contrast -- Dosage -- Exposure -- Absorbed dose -- KERMA -- Converting exposure to absorbed dose in air -- Dose in air vs dose in tissue -- Genetic & effective dose equivalents -- Dose and image contrast -- Dose and signal/noise ratio -- Practical issues -- The x-ray source -- Spatial distribution of x-ray photons -- Receptors -- Dosage & contrast issues -- Contrast agents -- Safety -- X-ray CT -- Planar x-rays: review -- Limitations -- Solutions to contrast and depth collapse -- Slicing Fred -- Linear projections -- Basic principle of CT -- Algebraic interpretation -- The central slice theorem -- Demonstration -- Convolution backprojection algorithm -- Backprojection -- Determining h(x) -- Scanning configurations and implementation -- Introduction -- First generation scanners -- Second generation systems -- Third generation scanners -- Fourth generation scanners -- Fifth generation scanners -- 6th generation -- Spiral reconstruction -- Image quality -- Spatial resolution -- Spatial resolution -- Physical factors in spatial resolution -- Density resolution -- CT image artefacts -- Streak & ring artefact -- Patient-related artefacts -- X-ray CT inherent -- Digital image manipulation -- Grey-scale windowing -- ROI selection -- Ultrasonics -- Basic physics -- The intensity of a planewave -- The acoustic impedance -- Propagation of HPW across acoustic interface -- Summary -- Finite aperture excitation -- The Fraunhofer approximation -- Summary -- Real acoustic media -- Attenuation -- Empirical treatment -- Ideal imaging parameters -- Axial resolution -- Lateral resolution -- Constraints -- Summary -- Pulse-echo ultrasonic imaging -- Introduction -- Applications -- Principles of operation -- Acoustic pulse generation -- Scanning geometries -- Implementation -- Linear B-mode -- Signal detection -- Image quality -- Image artefact -- Resolution -- Frame rate -- Doppler velocimetry -- Introduction -- Basic physics -- Reflection vs scattering -- Scattering of ultrasound by blood -- Doppler effect basics -- The continuous wave Doppler flowmeter -- Doppler signal demodulation -- Remarks -- Limitations of the CW flowmeter -- Attributes of the CW flowmeter -- The pulsed wave Doppler flowmeter -- Instrumentation -- Remarks -- Limitations of the pulsed Doppler velocimeter -- Rounding up -- An introduction to MRI -- Introduction -- Books and suggested reading -- Basic principles -- A brief history -- Motion within the atom -- The bare necessities of the QM description -- Classical description -- Orientation -- The net magnetisation vector -- Interacting with M -- The motion of M -- Relaxation processes -- The Bloch equations -- Significance of T1 and T2 -- T2 vs T2 -- Summary of relaxation -- Basic sequences -- Free induction decay -- Partial saturation -- Saturation recovery -- Inversion recovery sequence -- The spin echo sequence -- Contrast -- Proton density weighting -- T2 weighted -- T1 weighted -- Brain tissue contrast: example -- Summary -- Where's that echo coming from? -- Slice selection -- In-plane localisation -- Frequency encoding -- The signal detection process -- k-space -- Practically speaking -- Wrapping up -- Wave equations for ultrasound -- Derivation of the HWE -- The continuous medium -- The 3D acoustic wave equation -- Mathematical conventions used -- Convolution -- Sifting property -- Fourier transform -- Polar integrals


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Introductory Medical Imaging


    Beteiligte:
    Bharath, Anil (Autor:in)


    Erscheinungsdatum :

    2009


    Format / Umfang :

    1 Online-Ressource (186 Seiten)


    Anmerkungen:

    Campusweiter Zugriff (Universität Hannover) - Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots.
    Description based upon print version of record




    Medientyp :

    Buch


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    616.07/54



    Introductory

    Tema Archiv | 1988


    Introductory remarks

    Epstein, L. F. | NTRS | 1964


    Introductory remarks

    Gessow, A. | NTRS | 1977


    Introductory remarks

    Dose, K. | Elsevier | 1987


    Introductory comments

    Leger, L. J. / Miller, E. R. | NTRS | 1983