This text explains the mutual influences between the physical and dynamic processes in solids and their lasing properties. It provides insight into the physics and engineering of solid state lasers by integrating information from several disciplines, including solid state physics, materials science, photophysics, and dynamic processes in solids. The text discusses approaches to developing new laser materials and includes data tables of basic parameters that can be applied to laser design. Novel materials and techniques used in recent developments are also covered

    Chapter 4. Garnet crystals as laser hosts -- 4.1. Physical characteristics of garnets and mixed garnets -- 4.2. Chromium- and neodymium-doped garnets -- 4.3. Disordered (mixed) garnets -- 4.4. Glass and crystalline ceramics -- References -- Chapter 5. Fluoride laser crystals: YLiF4 (YLF) -- 5.1. Thermal and mechanical properties of YLF -- 5.1.1. Estimate of thermal load at fracture -- 5.2. Nonradiative losses in YLF -- 5.3. Neodymium-doped YLF -- 5.4. Holmium-doped YLF -- 5.5. Thulium-doped YLF -- 5.6. Other fluoride crystals -- 5.7. Cascade emission -- 5.8. Upconversion -- 5.8.1. Applications to upconversion -- References -- Chapter 6. Photophysics of solid state laser materials -- 6.1. Properties of the lasing ion. 6.1.1. Absorption; 6.1.2. Spontaneous emission; 6.1.3. Stimulated emission; 6.1.4. Oscillator strength -- 6.2. Nonradiative transition. 6.2.1. Energy gap and temperature dependence of multiphonon relaxation; 6.2.2. Temperature dependence of nonradiative relaxation -- References

    Chapter 7. Energy transfer -- 7.1. Introduction -- 7.2. Radiative energy transfer -- 7.3. Nonradiative energy transfer. 7.3.1. Basic mechanisms of energy transfer -- References -- Chapter 8. Lasing efficiency and sensitization -- 8.1. Introduction -- 8.2. Why is energy transfer needed? 8.2.1. Examples of CTH-doped systems -- 8.3. Temperature effects -- 8.4. The effect of Tm3+ concentration -- 8.5. The effect of Cr3+ concentration -- 8.6. Nature of ionic interaction. 8.6.1. Cr-Tm interaction; 8.6.2. Tm-Tm interaction; 8.6.3. Tm-Ho interaction; 8.6.4. Ho-Tm back interaction; 8.6.5. Selective energy transfer -- References

    Chapter 9. Two-micron lasers: holmium- and thulium-doped crystals -- 9.1. Introduction -- 9.2. Advantages of the holmium laser. 9.2.1. Utilizing energy transfer -- 9.3. Conventional pumping. 9.3.1. CW laser operation; 9.3.2. Pulsed operation of holmium lasers -- 9.4. Diode pumping. 9.4.1. End-pumped 2-æm lasers; 9.4.2. Side-pumped 2-æm lasers -- References -- Chapter 10. Yb:YAG Laser -- 10.1. Introduction -- 10.2. End-pumping -- 10.3. Side-pumping -- 10.4. Face-pumping or thin disk configuration -- References -- Chapter 11. More on other crystals: fluorides and vanadates -- 11.1. Introduction -- 11.2. Laser crystals: YLF (YLiF4) and YVO4 -- 11.3. Pumping schemes. 11.3.1. Diode end-pumping of Nd:YLF; 11.3.2. Side-pumping of Nd:YLF -- 11.4. Diode end-pumping of Nd:YVO4 and Nd:GdVO4 -- 11.4.1. Advantages and disadvantages of vanadate crystals; 11.4.2. Q-switching and mode-locking operation -- References -- Appendix: Diode-pumped solid state lasers -- A.1. Introduction -- A.2. Advantages of diode-pumping -- A.3. Pumping schemes -- A.4. Longitudinal pumping -- A.5. Transverse pumping -- A.6. Types of diodes -- A.7. Temperature control -- References -- Index

    List of abbreviations -- Preface -- Chapter 1. Introduction -- 1.1. Historical background. 1.1.1. Early developments; 1.1.2. Technological developments -- 1.2. Laser materials. 1.2.1. Elements of a typical laser oscillator; 1.2.2. Optics -- References -- Chapter 2. Solid state laser materials -- 2.1. Properties. 2.1.1. Optics; 2.1.2. Material design; 2.1.3. Mechanical design -- 2.2. Doping ions. 2.2.1. Laser host materials -- 2.3. General properties of hosts; 2.3.1. Optical properties; 2.3.2. Chemical properties; 2.3.3. Mechanical properties; 2.3.4. Thermal properties -- References -- Chapter 3. Structure and bonding of solids -- 3.1. Crystal structure. 3.1.1. Types of crystals -- 3.2. Crystal binding. 3.2.1. Van der Waals interaction; 3.2.2. Ionic bonding; 3.2.3. Covalent bonding -- References


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The physics and engineering of solid state lasers




    Erscheinungsdatum :

    2006


    Format / Umfang :

    1 online resource (xiv, 203 p. : ill.)


    Anmerkungen:

    Campusweiter Zugriff (Universität Hannover) - Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots.
    "SPIE digital library. - Includes bibliographical references and index
    Includes bibliographical references and index
    Restricted to subscribers or individual electronic text purchasers




    Medientyp :

    Buch


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Schlagwörter :

    Klassifikation :


    Ceramic solid state lasers

    Ueda, K. | IEEE | 2005


    Solid State VUV Lasers

    IEEE; Lasers and Electro-Optics Society | British Library Conference Proceedings | 1993


    Advanced solid-state lasers

    British Library Conference Proceedings


    Solid State Excimer Lasers

    Warwar, Greg / Sauerbrey, Roland | SPIE | 1989


    Ceramic Lasers: Next Generation of Solid State Lasers

    IEEE Lasers and Electro-optics Society | British Library Conference Proceedings | 2005