The choice of available infrared (IR) detectors for insertion into modern IR systems is both large and confusing. The purpose of this volume is to provide a technical database from which rational IR detector selection criteria evolve, and thus clarify the options open to the modern IR system designer. Emphasis concentrates mainly on high-performance IR systems operating in a tactical environment, although there also is discussion of both strategic environments and low- to medium-performance system requirements

    1. Introduction. 2. IR detector performance criteria. 2.1. Photon detectors -- 2.2. Thermal detectors

    3. IR detector materials: a technology comparison. 3.1. Intrinsic direct bandgap semiconductor -- 3.2. Extrinsic semiconductor -- 3.3. Quantum well IR photodetectors (QWIPs) -- 3.4. Silicon schottky barrier detectors -- 3.5. High-temperature superconductor -- 3.6. Conclusions

    4. Intrinsic direct bandgap semiconductors. 4.1. Minority carrier lifetime -- 4.2. Diode dark current models -- 4.3. Binary compounds -- 4.4. Ternary alloys -- 4.5. Pb1-x SnxTe -- 4.6. Type III superlattices -- 4.7. Type II superlattices -- 4.8. Direct bandgap materials: conclusions

    5. HgCdTe: material of choice for tactical systems. 5.1. HgCdTe material properties -- 5.2. HgCdTe device architectures -- 5.3. ROIC requirements -- 5.4. Detector performance -- 5.5. HgCdTe: conclusions

    6. Uncooled detection. 6.1. Thermal detection -- 6.2. Photon detection -- 6.3. Uncooled photon vs. thermal detection limits -- 6.4. Uncooled detection: conclusions

    7. HgCdTe electron avalanche photodiodes (EAPDs). 7.1. McIntyre's avalanche photodiode model -- 7.2. Physics of HgCdTe EAPDs -- 7.3. Empirical model for electron avalanche gain in HgCdTe -- 7.4. Room-temperature HgCdTe APD performance -- 7.5. Monte Carlo modeling -- 7.6. Conclusions

    8. Future HgCdTe developments. 8.1. Dark current model -- 8.2. The separate absorption and detection diode structure -- 8.3. Multicolor and multispectral FPAs -- 8.4. High-density FPAs -- 8.5. Low background operation -- 8.6. Higher operating temperatures -- 8.7. Conclusion -- Epilogue -- Appendix A. Mathcad program for HgCdTe diode dark -- Current modeling -- References -- About the author -- Index


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fundamentals of infrared detector materials




    Erscheinungsdatum :

    2007


    Format / Umfang :

    1 online resource (xii, 173 p. : ill.)


    Anmerkungen:

    Campusweiter Zugriff (Universität Hannover) - Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots.
    "SPIE digital library. - Includes bibliographical references (p. 165-168) and index. - Title from PDF t.p. (viewed on 8/23/09)
    Includes bibliographical references (p. 165-168) and index
    Restricted to subscribers or individual electronic text purchasers




    Medientyp :

    Buch


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :



    Energy materials : fundamentals to applications

    Dhoble, Sanjay J. ;Kalyani, N. Thejo ;Vengadaesvaran, B. | TIBKAT | 2021


    Fundamentals of Drying Porus Materials

    Hansen, D. / Nissan, A. H. | NTRS | 1961


    Compact infrared detector

    Gupta, A. / Hong, S. / Moacanin, J. | NTRS | 1981


    Infrared detector developments

    Clark, M.A.G. / Hodge, A. / Kidson, P. | Tema Archiv | 1988